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Abstract The majority of intrinsic rho-independent terminator
signals, reported to consist of stable hairpin structures followed
by T-rich regions, possess the potential to operate bi-direction-
ally and to induce transcription terminations on both strands of
the DNA duplex in Escherichia coli. By using RNAMotif soft-
ware, we investigated the distributions of termination motifs
around the 3 0-ends of overlapping and non-overlapping genes at
the genomic level. We suggest that the positions of compactly
encoded E. coli genes and rho-independent terminators are opti-
mized to terminate the adjoining genes on their antisense strands
efficiently, and not to mis-terminate overlapping transcripts, due
to their bi-directional properties.
! 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In bacterial species, rho-independent terminators are widely
accepted as canonical intrinsic termination signals in the DNA
that function in minimal in vitro transcription systems [1].
Although bacterial transcription termination is controlled by
many factors, genomic analyses that have taken advantage
of the availability of sequence data have suggested that most
of the transcription terminations of annotated protein-encod-
ing and non-coding RNA transcription units are regulated
by intrinsic rho-independent terminators [1]. Intrinsic termina-
tors are characterized by a GC-rich palindromic structure fol-
lowed by a tail of A-rich region on the template DNA strand
[2,3]. The palindromic region forming a stem–loop structure in
the nascent RNA is reported to pause RNA polymerases [4–6]
and weaken the interaction between elongated oligo RNA and
template DNA [7,8]. Owing to the weak hybridization energy
between rU and dA [9], final release may also be facilitated
by the following U-rich region [10].

In view of these subgenomic features, many algorithms have
been developed to identify the intrinsic terminators [11–16].
RNAMotif software is used to search RNA motifs defined
by the nucleotide sequences and structural constraints given
by model file arguments named ‘descriptor’ [17]. Descriptor
files of the intrinsic terminator have been reported by Lesnik
et al. [15], based on a model consisting of stable hairpin struc-
tures followed by T-rich regions as proposed by d’Aubenton
Carafa et al. [13]. As demonstrated by Livny et al. [18], RNA-
Motif misses out a fraction of documented intrinsic termina-
tor motifs detectable by other resources such as TransTerm
[19]. Nevertheless, RNAMotif has been widely utilized in
many bioinformatics approaches; for example, to define
transcription terminations and to predict novel transcription
units [18,20–23]. Following these findings and applications,
a bi-directional rho-independent terminator in the intergenic
region (IGR) between the tonB and P14 genes has been iden-
tified; this could function bi-directionally by sharing the two
complementary hairpins on the double-stranded genomic
DNA, terminating the transcription of both genes [15,24].
Lesnik et al. also suggested that many bi-directional rho-inde-
pendent terminators might exist in the Escherichia coli genome
[15].
Here, we discuss how transcription units and intrinsic ter-

minators are coordinately organized and distributed within
the E. coli genome based on the prediction of possible intrin-
sic terminator motifs at the genomic level using RNAMotif.
In order to analyze the positioning characteristics of the pre-
dicted motifs in light of the patterns of the 3 0-ends of genes
overlapping on neighboring genes or adjoining IGRs, either
uni-directionally or bi-directionally, we constructed bioinfor-
matics workflows using G-language Genome Analysis Envi-
ronment, a generic analysis workbench for bioinformatics
[25,26]. We first present that the majority of rho-independent
terminators are potentially bi-directional owing to the sym-
metric features of their hairpins, with low free energies in
both the genetic complements. Further, by comparing the
analysis of the 3 0-ends of overlapping and non-overlapping
genes with those in the operon transcripts, we demonstrate
computationally the circumvention and utilization of the
intrinsic terminations associated with adjacent genes and with
the bi-directional properties of these terminators. We suggest
that the loci of intrinsic rho-independent terminators may
have been optimized to be efficiently positioned in the down-
stream regions of genes, compactly encoded on the E. coli
genomic DNA.

Abbreviations: IGR, intergenic region; tRNA, transfer RNA; rRNA,
ribosomal RNA; E. coli, Escherichia coli; nt, nucleotides; bp, base pairs
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2. Materials and methods

2.1. Genome annotation and sequence data
The complete genome sequence of E. coli strain K-12 MG1655

(RefSeq: NC000913) containing 4639675 bp was obtained from the
National Center for Biotechnology Information (NCBI) ftp server
(ftp://ftp.ncbi.nlm.nih.gov). The annotations and positions of 4441
documented genes, including tRNA, rRNA, and other non-protein-
coding RNAs, and 997 identified transcription units of E. coli were
downloaded as flat files from the EcoCyc database, Encyclopedia of
Escherichia coli K-12 Genes and Metabolism (http://www.ecocyc.org,
accessed 23 July 2006) [27].

2.2. Preparation of data on 3 0-end positioning and operon categories
The 3 0-ends of every gene were grouped into four categories, and the

genes included in the operon transcripts were divided into two catego-
ries. Among the 3 0-ends of the 4441 genes, 2335 were non-overlapping
and adjoined IGRs with the adjacent downstream gene on the same
DNA strand (defined as ‘tail-to-head neighboring’), 1230 adjoined
IGRs with the adjacent downstream gene on the complementary
strand (‘tail-to-tail neighboring’), 690 overlapped with their adjacent
genes uni-directionally (‘tail-to-head overlapping’), and 186 over-
lapped bi-directionally (‘tail-to-tail overlapping’). Out of 977 transcrip-
tion units stored in EcoCyc, 355 were prepared as operon transcripts,
each encoding more than two genes. The endmost genes of the respec-
tive operon transcripts were defined as ‘operon-end’ genes, and the
remaining 884 genes were defined as ‘within-operon’ genes.
To determine the validity of our data set, which included annotated

but experimentally unidentified genes, we repeated the same analysis
on another data set excluding genes encoding ‘hypothetical proteins’,
as annotated in GenBank, and filtered by a Gene Prediction Accuracy
Classification (GPAC) test [28] (see Supplementary Materials for de-
tails).

2.3. Prediction of rho-independent terminators
Using RNAMotif, the sequences and structural motifs of rho-inde-

pendent terminators containing hairpins followed by T-rich regions
were predicted at the genomic level. The original RNAMotif model
files were constructed by machine learning of the nucleotide composi-
tion around experimentally confirmed rho-independent terminators,
which included an A-rich region at the 5 0-side of the unidirectional
motif in addition to the experimentally suggested hairpin structure
with a 3 0-side T-rich region, for more efficient prediction of the termi-
nators. However, this model with the 5 0-side A-region inherently re-
sults in preferential prediction of bi-directional terminators.
Therefore, to determine the bi-directional properties of rho-indepen-
dent terminators by using unbiased criteria, we omitted the 5 0 A-region
from the model and adopted only the total DG0 scores of hairpins with
a 3 0 T-region for the prediction of each motif at its optimal cut-off
score of 6!4, which is reported to significantly cover the majority of
experimentally identified intrinsic terminators [15]. In order to com-
pare the bi-directional properties of predicted motifs with different
scores, the predicted motifs were further prepared at three DG0 thresh-
olds of !4, !8, and !12. The positions of transcription terminations
were defined accordingly as 7 nt upstream of the 3 0-ends of the pre-
dicted motifs. Within the predicted terminators, those having possible
hairpin structures in their complementary DNA strands were further
screened for bi-directionality by seeking a hairpin structural motif lo-
cated directly opposite of the original hairpin position; that is, symmet-
ric bi-directional rho-independent terminators were defined if the
positions of the partial base-stacking pairs of two complementary
hairpin structures on either of the two strands coincided with each
other.

2.4. Characteristic analyses of predicted intrinsic terminators
The physical properties to potentially form stable hairpins with low

free energies reside in both DNA strands at a locus. However, pairs of
significant hairpin structures of the intrinsic terminators predicted by
RNAMotif in the same loci on opposite strands are not always sym-
metric, when considering the conditions for other sequence attributes
in the motif and/or hybridization of rU and rG. Therefore, in order
to estimate the bi-directional properties of rho-independent termina-
tors, we performed not only the prediction of symmetric bi-directional
terminators, but also the analysis of the lengths between loop medians

and termination positions of the predicted motifs and the distances
between the termination positions of two motifs encoded on the com-
plementary DNA strands. The two-sided 95% confidence intervals of
the lengths between loop medians and termination positions of the pre-
dicted motifs were calculated. Then, for each predicted terminator, we
counted the number of antisense terminator motifs, whose termination
positions were within twice the ranges between the two-sided 95% con-
fidence intervals upstream of the termination position in the sense
strand.

2.5. Estimation of occurrence ratio of predicted rho-independent
terminators with respect to each position around 3 0-end of genes

Distributions of the termination positions of the predicted rho-inde-
pendent terminators were analyzed bi-directionally around the 3 0-ends
of the genes within the each 3 0-end positioning categories. For every
gene in each category, termination positions of motifs were counted
using 20-bp sliding windows with 1-bp displacement, and the motif
count at each distance (bp) was normalized and defined as ‘Ratio
(%)’ by dividing by the total number of genes in the category, and
by the window size, i.e. 20. In order to discuss how terminator motifs
were characteristically distributed in the each 3 0-end positioning cate-
gory, the highest ‘Ratio (%)’ of both DNA strands defined as peak
ratios and their relative positions from the 3 0-end of gene were paral-
leled with those of the other categories.

3. Results and discussion

In this study, the optimization of gene positioning associated
with the bi-directional properties of intrinsic rho-independent
terminators in E. coli was discussed. We initially predicted
the rho-independent terminators at genomic level by using
RNAMotif software, and suggested many of the rho-indepen-
dent terminators possibly have bi-directional properties that
not only mis-terminates an overlapping transcription units
on the terminators in the same DNA strand but also those
in the complementary strand. By analyzing distributions of
predicted rho-independent terminator motifs around the 3 0-
ends of genes categorized into the four 3 0-end positioning types
of ‘tail-to-head neighboring’, ‘tail-to-tail neighboring’, ‘tail-to-
head overlapping’ and ‘tail-to-tail overlapping’, our results
suggested that the positioning of intrinsic terminators has min-
imized mis-termination of overlapping genes on the same
strand and the complementary strand. Furthermore, bi-direc-
tional intrinsic terminators are speculated to distribute in such
a way as to maximize co-ordinated termination of adjoining
genes on opposite strands. Though ‘within-operon’ genes are
not terminated in the proximity of downstream region of the
3 0-ends, we indicated that the minimization of mis-termination
were independent from the biases of the ‘within-operon’ genes.
This is confirmed by observing the distribution pattern around
the 3 0-ends utilizing the information of identified operon tran-
scripts and by comparing the numbers of respective 3 0-end
positioning type genes in the two operon categories of ‘with-
in-operon’ and ‘operon-end’ with those of all genes.

3.1. Comparison of 3 0-end positioning types within each operon
category

Genes in each of the 3 0-end positioning categories were
counted and compared with respect to the corresponding oper-
on category (Table 1). Among the total 884 ‘within-operon’
genes, the numbers of ‘tail-to-head neighboring’ and ‘tail-
to-head overlapping’ 3 0-ends were 611 (69.12%) and 263
(29.75%), respectively. As expected, these proportions were
both higher than ‘operon-end’ genes and all genes, because
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the operon encodes multiple closely packed genes transcribed
together.
Only one gene of the ‘tail-to-tail overlapping’ 3 0-end type

was found in the ‘within-operon’ category, and its proportion
of 0.11% was markedly lower than the 3.10% of these genes in
the ‘operon-end’ category and the 4.19% among all genes
(Table 1). The percentage of genes with ‘tail-to-tail neighbor-
ing’ 3 0-ends (1.02%) in the ‘within-operon’ category was also
markedly lower than in the other categories (37.46% for ‘oper-
on-end’ genes and 27.70% for all genes); 133 out of the 355
‘operon-end’ genes had ‘tail-to-tail neighboring’ 3 0-ends – the
highest proportion among those of ‘tail-to-tail neighboring’
3 0-ends in all categories. The same tendencies were observed
upon removal of the hypothetical genes (see Supplementary
Materials).

3.2. Bi-directional properties of intrinsic rho-independent
terminators

Using RNAMotif, 15665, 5445, and 1585 rho-independent
terminators were predicted at the respective DG0 thresholds
of !4, !8, and !12. We analyzed the properties of the pre-
dicted terminators by analyzing their lengths (Fig. 1a–c), the
distances between the termination positions of two motifs en-
coded on the complementary DNA strands (Fig. 1d–f), and the
numbers of rho-independent terminators that were bi-direc-
tional (Fig. 1g–i).
The maximum and minimum lengths between the loop medi-

ans and termination positions of all predicted motifs shown in
Fig. 1a–c were 43 and 10.5 nt, respectively, and the average size
was 19.57 nt. The regions between the two-sided 95% confi-
dence intervals ranged from 13 to 26 nt, from 13.5 to 26 nt,
and from 15 to 26 nt, for DG0 thresholds of !4, !8, and
!12, respectively. The possible distances of the predicted ter-
mination positions in the antisense DNA strand from those
in the sense strand are displayed in Fig. 1d–f. The total fre-
quency of antisense terminators distributed in the regions
between !52 and !26 nt away from the termination position
of terminator motif in the sense strand at DG0 threshold !4
was 133.04%. The region between positions !52 and !26 nt
was defined in accordance with the two-sided 95% confidence
interval regions from positions 13 to 26 nt as described above,
and by taking twice the length to estimate the equivalent length
of the bi-directional motifs, in order to account for the anti-
sense structures. According to the same procedure, the total
frequencies of antisense terminators were calculated to be
189.35% and 219.74% at DG0 thresholds !8 and !12, respec-
tively. Within the sets of complementary terminators at DG0

scores !4, !8, and !12 and below, 3375 (21.54%), 1644
(30.19%), and 529 (33.38%), respectively, were bi-directional
rho-independent terminators, sharing double-stranded DNA
regions to form symmetrical hairpin structures with DG0 scores
!4 and below. The distances between the termination posi-

tions of symmetrical complementary pairs were distributed
around 40 bp. Within the putative terminators predicted by
RNAMotif, those of lower DG0 scores were suggested to have
higher bi-directional properties. This result provided the ratio-
nale that the observations of predicted terminators having low
DG0 scores were reasonable to discuss their bi-directionalities
in further analyses, conducted as follows. Although a compre-
hensive listing of 439 candidate bi-directional terminators has
already been reported by Lesnik et al. using a model suited for
the identification of bi-directional motifs as explained above
[15], we showed here additionally using a uni-directional motif
model, that the majority of intrinsic terminator motifs with

Fig. 1. Characteristic analysis of predicted rho-independent termina-
tors. Lengths between loop medians and termination positions of
predicted rho-independent terminator motifs with DG0 scores of 6!4,
!8, and !12 are displayed respectively in (a), (b), and (c). Count of
motifs at each length (nt) was normalized as ‘Ratio (%)’ by dividing by
the total number of motifs predicted at the respective threshold.
Distances of predicted transcription termination positions in the
antisense DNA strand from those in the sense strand are shown in (d–
f). (d), (e), and (f) represent distributions of predicted motifs in the
antisense strand from motifs in the sense strands with DG0 scores of
6!4, !8, and !12, respectively. In the stacked histogram, the count of
antisense motifs at each distance (bp) was normalized as ‘Ratio (%)’ by
dividing by the total number of motifs predicted at the respective
threshold. DG0 scores of antisense motifs are indicated by light gray
(6!4 and >!8), gray (6!8 and >!12), and black (6!12). Counts of
bi-directional rho-independent terminators with sense strand motifs
with DG0 scores of 6!4 (g), !8 (h), and !12 (i) were also normalized
as ‘Ratio (%)’ by dividing by the total number of motifs predicted by
the respective threshold.

Table 1
Numbers of genes with each 3 0-end positioning type within the categories of ‘within-operon’, ‘operon-end’, and all genes

Positioning type of 3 0-end ‘Within-operon’genes ‘Operon-end’genes All genes

Tail-to-head neighboring 611 (69.12%) 203 (57.18%) 2335 (52.58%)
Tail-to-tail neighboring 9 (1.02%) 133 (37.46%) 1230 (27.70%)
Tail-to-head overlapping 263 (29.75%) 8 (2.25%) 690 (15.54%)
Tail-to-tail overlapping 1 (0.11%) 11 (3.10%) 186 (4.19%)

Total 884 355 4441
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sufficiently low DG0 have antisense complements and thus have
a high likelihood of forming bi-directional terminators. There-
fore, most rho-independent terminators probably have highly
bi-directional properties, as a result of the symmetry-based
low free energies and hairpin formations on the double-
stranded DNA.

3.3. Optimization of E. coli gene positioning associated with
intrinsic terminators

The termination positions marked by the predicted rho-inde-
pendent terminators were analyzed bi-directionally around the
3 0-ends of the genes. The distances of the terminations of the

predicted terminators and the bi-directional terminators from
the 3 0-ends of all genes in both DNA strands are shown in
Fig. 2a–d, including certain fractions of those having lower
DG0 scores of 6!8 and 6!12, and their bi-directional proper-
ties were also suggested by focusing on the downstream parts
of the 3 0-ends of the genes. The predicted termination positions
were distributed at around +33 bp with the peak ratio of 3.92%
in the sense strand, and at about !4 bp with the peak ratio of
2.66% in the antisense strand, as calculated from the normal-
ized count per gene per position (for details, see Section 2.5).
The terminations of bi-directional terminators were distributed
at around +34 bp in the sense strand, where the peak ratio was
1.53%; in the antisense strand they were distributed at around
0 bp, where the peak ratio was 1.23%.
Similarly to the result for all genes, the termination positions

were distributed around the ‘tail-to-head neighboring’ and
‘tail-to-tail neighboring’ 3 0-ends (Fig. 3a–d and e–h). The peak
ratios of 3.66% (1.09% bi-directional) in the sense strand and
1.36% (0.79% bi-directional) in the antisense strand, calculated
using all predicted terminators, were distanced +34 bp (+37 bp
bi-directional) and !4 bp (+2 bp bi-directional), respectively,
from the 3 0-ends of the genes in the ‘tail-to-head neighboring’
category. Likewise, for the ‘tail-to-tail neighboring’ category,
the peak ratios were 7.07% (3.63% bi-directional) in the sense
strand and 6.86% (3.19% bi-directional) in the antisense
strand, distanced +32 bp (+32 bp bi-directional) and !4 bp
(0 bp bi-directional) from the 3 0-ends of the genes. The peak
ratios of the ‘tail-to-tail neighboring’ category, including high-
er fractions of lower DG0 scores of 6!8 and 6!12, were sig-
nificantly higher than those of the ‘tail-to-head neighboring’
and of all genes (Fig. 2), suggesting the marked adoption of
bi-directional properties that can terminate a pair of ‘tail-to-
tail neighboring’ genes with one shared bi-directional termina-
tor.

Fig. 2. Distributions of rho-independent terminators around 3 0-ends
of all genes. Distances of termination positions of rho-independent
terminator motifs distributed in sense and antisense DNA strands from
the 3 0-ends of genes are shown in (a) and (b), respectively. Frequency
of the motifs with respect to the position around 3 0-end of genes were
normalized as ‘Ratio (%)’ (for details, see the Section 2.5). DG0 scores
are indicated by light gray (6!4 and >!8), gray (6!8 and >!12), and
black (6!12) bars in the stacked histogram. From the histograms, bi-
directional rho-independent terminators (not colored by motif scores)
were extracted to (c) sense strand and (d) antisense strand.

Fig. 3. Distributions of rho-independent terminators around 3 0-ends of ‘tail-to-head neighboring’ (a–d), ‘tail-to-tail neighboring’ (e–h), ‘tail-to-head
overlapping’ (i–l), and ‘tail-to-tail overlapping’ (m–p) genes. For details, see caption to Fig. 2.
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In the categories of ‘tail-to-head overlapping’ and ‘tail-to-
tail overlapping’, marked distributions of terminators were
not observed, compared with those described above (Fig. 3i–l
and m–p). We suggest that the result in the ‘tail-to-head over-
lapping’ category, showing a circumvention of the terminator
structures, might be designed to prevent mis-termination,
pausing the transcription in the middle of another overlapped
gene in co-orientation. Genes in this category may be termi-
nated by other intrinsic motifs that are not given in the model
used here, or by other transcription termination factors [1].
However, a comparison of the ‘within-operon’ and ‘operon-
end’ categories (Fig. 4) showed that the ‘within-operon’ cate-
gory also lacked marked distributions, and many of the ‘tail-
to-head overlapping’ genes were suggested to be involved in
the operon transcripts (see Table 1 for details). We thus spec-
ulate that some of the ‘tail-to-head overlapping’ genes are
‘within-operon’ genes, and therefore are not terminated at
the proximal downstream regions of their 3 0-ends.
From the results of the ‘tail-to-tail overlapping’ category, we

further consider that the uni-directional intrinsic motifs termi-
nating the ‘tail-to-tail overlapping’ genes are avoided to de-
crease the chance of mis-termination of their adjacent genes
in antisense strands by their possible bi-directional properties.
Only a negligible number of genes in this category belonged to
the ‘within-operon’ category (Table 1), and therefore some
kind of termination other than by the intrinsic signal is ex-
pected – for example, by rho-dependent termination [1]. Neg-
ative selective pressure works against gene formation in the
antisense strands of operon transcripts (Table 1), and this
may be partly attributable to the circumvention of mis-termi-
nation of the antisense gene caused by the bi-directional termi-
nator. On the other hand, in the analyses of the ‘operon-end’
category, the high peak ratios of 8.07% (3.66% bi-directional)
of the sense strand and 4.19% (2.75% bi-directional) of the
antisense strand were distanced at +32 bp (+34 bp bi-direc-

tional) and !2 bp (+5 bp bi-directional) from the 3 0-ends of
the genes (Fig. 4); we considered that this result was caused
by the inclusion of many ‘tail-to-tail neighboring’ genes in
the ‘operon-end’ category, as suggested in Table 1, or was
due to the high sensitivity of the experimentally confirmed
transcription terminations.
The same procedures were repeated for every positioning

pattern of the 3 0-ends after filtering by the GPAC test and
for randomly sampled sets of 100 genes by a bootstrap test,
but the results showed no marked change (see Supplementary
Materials). We therefore conclude that of our results were not
biased by variations in the annotation accuracy of genes or by
the numbers of genes in the respective categories.
We conducted a bioinformatics analysis to investigate gene

positioning in relation to the intrinsic termination motifs,
and we discussed here the optimal positioning of bi-directional
terminators in utilizing efficient terminations of head-on and
non-overlapping gene pairs in a dual role and in circumventing
the mis-termination of overlapping transcripts. A previous
study has indicated that such structure-dependent intrinsic ter-
minators appear to be employed in only a few bacterial species,
as suggested by the fact that the calculation of free energies
around the 3 0-ends of their genes resulted in the lowest distri-
butions in regions downstream of ‘tail-to-tail neighboring’
genes [29]. We also suggest that our data support the concept
of dynamic gene positioning by a combination of intrinsic ter-
minators that has possibly been optimized in E. coli.
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Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.febslet.2006.11.053.
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